Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1302435, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571714

RESUMO

Introduction: In the context of climate change, monitoring the spatial and temporal variability of plant physiological parameters has become increasingly important. Remote spectral imaging and GIS software have shown effectiveness in mapping field variability. Additionally, the application of machine learning techniques, essential for processing large data volumes, has seen a significant rise in agricultural applications. This research was focused on carob tree, a drought-resistant tree crop spread through the Mediterranean basin. The study aimed to develop robust models to predict the net assimilation and stomatal conductance of carob trees and to use these models to analyze seasonal variability and the impact of different irrigation systems. Methods: Planet satellite images were acquired on the day of field data measurement. The reflectance values of Planet spectral bands were used as predictors to develop the models. The study employed the Random Forest modeling approach, and its performances were compared with that of traditional multiple linear regression. Results and discussion: The findings reveal that Random Forest, utilizing Planet spectral bands as predictors, achieved high accuracy in predicting net assimilation (R² = 0.81) and stomatal conductance (R² = 0.70), with the yellow and red spectral regions being particularly influential. Furthermore, the research indicates no significant difference in intrinsic water use efficiency between the various irrigation systems and rainfed conditions. This work highlighted the potential of combining satellite remote sensing and machine learning in precision agriculture, with the goal of the efficient monitoring of physiological parameters.

2.
J Environ Manage ; 113: 495-500, 2012 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22766042

RESUMO

Two local barley strains cv. Ardhaoui originated from Tlalit and Switir, sourthern Tunisia were grown in pots in a glasshouse assay, under well-watered conditions for a month. Plants were then either subjected to water deficit (treatment) or continually well-watered (control). Control pots were irrigated several times each week to maintain soil moisture near field capacity (FC), while stress pots experienced soil drying by withholding irrigation until they reached 50% of FC. Variation in relative water content, leaf area, leaf appearance rate and leaf gas exchange (i.e. net CO(2) assimilation rate (A), transpiration (E), and stomatal conductance (gs)) in response to water deficit was investigated. High leaf relative water content (RWC) was maintained in Tlalit by stomatal closure and a reduction of leaf area. Reduction in leaf area was due to decline in leaf gas exchange during water deficit. Tlalit was found to be drought tolerant and able to maintain higher leaf RWC under drought conditions. Water deficit treatment reduced stomatal conductance by 43% at anthesis. High net CO(2) assimilation rate under water deficit was associated with high RWC (r = 0.998; P < 0.01). Decline in net CO(2) assimilation rate was due mainly to stomatal closure. Significant differences between studied strains in leaf gas exchange parameters were found, which can give some indications on the degree of drought tolerance. Thus, the ability of the low leaf area plants to maintain higher RWC could explain the differences in drought tolerance in studied barley strains. Results showed that Tlalit showed to be more efficient and more productive than Switir.


Assuntos
Secas , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Água/metabolismo , Tunísia
3.
J Exp Bot ; 61(3): 765-75, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19933320

RESUMO

The interaction of photosynthesis and respiration has been studied in vivo under conditions of limited water supply and after consecutive rewatering. The role of the alternative (v(alt)) and cytochrome (v(cyt)) pathways on drought stress-induced suppression of photosynthesis and during photosynthetic recovery was examined in the Nicotiana sylvestris wild type (WT) and the complex I-deficient CMSII mutant. Although photosynthetic traits, including net photosynthesis (A(N)), stomatal (g(s)) and mesophyll conductances (g(m)), as well as respiration (v(cyt) and v(alt)) differed between well-watered CMSII and WT, similar reductions of A(N), g(s), and g(m) were observed during severe drought stress. However, total respiration (V(t)) remained slightly higher in CMSII due to the still increased v(cyt) (to match ATP demand). v(alt) and maximum carboxylation rates remained almost unaltered in both genotypes, while in CMSII, changes in photosynthetic light harvesting (i.e. Chl a/b ratio) were detected. In both genotypes, photosynthesis and respiration were restored after 2 d of rewatering, predominantly limited by a delayed stomatal response. Despite complex I dysfunction and hence altered redox balance, the CMSII mutant seems to be able to adjust its photosynthetic machinery during and after drought stress to reduce photo-oxidation and to maintain the cell redox state and the ATP level.


Assuntos
Secas , Complexo I de Transporte de Elétrons/deficiência , Nicotiana/fisiologia , Fotossíntese/fisiologia , Estresse Fisiológico , Água/fisiologia , Western Blotting , Respiração Celular , Citocromos/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Gases/metabolismo , Redes e Vias Metabólicas , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Mutação/genética , Oxirredutases/metabolismo , Pigmentos Biológicos/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Característica Quantitativa Herdável , Solubilidade , Nicotiana/enzimologia , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...